Critical behaviour of a fluid in a random shear flow: Renormalization group analysis of a simplified model
نویسندگان
چکیده
Critical behaviour of a fluid (binary mixture or liquid crystal), subjected to strongly anisotropic turbulent mixing, is studied by means of the field theoretic renormalization group. As a simplified model, relaxational stochastic dynamics of a non-conserved scalar order parameter, coupled to a random velocity field with prescribed statistics, is considered. The velocity is taken Gaussian, white in time, with correlation function of the form ∝ δ(t − t′)/|k⊥| , where k⊥ is the component of the wave vector, perpendicular to the distinguished direction (“direction of the flow”) — the d-dimensional generalization of the ensemble introduced by Avellaneda and Majda [Commun. Math. Phys. 131 381] within the context of passive scalar advection. It is shown that, depending on the relation between the exponent ξ and the space dimensionality d, the system exhibits various types of large-scale self-similar behaviour, associated with different infrared attractive fixed points of the renormalization-group equations. In addition to well known asymptotic regimes (model A of equilibrium critical dynamics and passively advected scalar with no self-interaction), existence of a new, non-equilibrium and strongly anisotropic, type of critical behaviour (universality class) is established, and the corresponding critical dimensions are calculated to the second order of the double expansion in ξ and ε = 4 − d (two-loop approximation). The most realistic values of the model parameters (for example, d = 3 and the Kolmogorov exponent ξ = 4/3) belong to this class. The scaling behaviour appears anisotropic in the sense that the critical dimensions related to the directions parallel and perpendicular to the flow are essentially different. The results are in qualitative agreement with the results, obtained in experiments and simulations of fluid systems subjected to various kinds of regular and chaotic anisotropic flows. PACS numbers: 64.75.+g, 05.10.Cc, 64.60.Ht, 05.40−a Critical behaviour of a fluid in a random shear flow 2
منابع مشابه
Simulation of Boiling in a Vertical Channel Using Ensemble Average Model
Simulation of turbulence boiling, generation of vapour and predication of its behaviour are still subject to debate in the two-phase flow area and they receive a high level of worldwide attention. In this study, a new arrangement of the three dimensional governing equations for turbulence two-phase flow with heat and mass transfer are derived by using ensemble averaging two-fluid model and ...
متن کاملVibration Analysis of Carotid Arteries Conveying Non-Newtonian Blood Flow Surrounding by Tissues
The high blood rate that often occurs in arteries may play a role in artery failure and tortuosity which leads to blackouts, transitory ischemic attacks and other diseases. However, vibration and instability analysis of carotid arteries are lacking. The objective of this study is to investigate the vibration and instability of the carotid arteries conveying blood under axial tension with surrou...
متن کاملAnalytical and comparative investigations on counter flow heat exchanger using computational fluid dynamics
This paper presents a comprehensive and exclusive thermodynamic analysis of counter flow heat exchanger under various operating and geometrical conditions. Analysis system (ANSYS) workbench 14.0 has been used for computational analysis and comparison with previous literature has been carried out in view of variable temperature and mass flow rate of hot and cold fluids. An analytical and statist...
متن کاملTime-Dependent Real-Space Renormalization Group Method
In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملStudy of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction
Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006